Training Program

 

The feedstock

 

 

 

 

Biomass and waste are organic matter based on carbon, hydrogen, oxygen, nitrogen and sulphur. Two main challenges arise to convert these feedstocks: they are heterogenous and broadly spread in the nature. The summer school will treat about these feedstocks, their availability and composition, and whether the composition and properties of a specific feedstock may guide the technology choice for its conversion.

 

 

 

The conversion processes

 

 

We may split the conversion process in two main stages: conversion process itself (the reactor) and the cleaning and upgrading of the gas to reach to specifications required downstream (a second stage of reaction, storage, or injection into the transportation network). Reaction step processes may be divided in two groups (biochemical process and thermochemical process) depending in the phenomena that drives the reaction. The summer school will be structured following these groups.

 

 

 

Biochemical processes

Biochemical processes are mostly wet methods at low temperatures and pressures where biochemical reactions are driven by a large group of bacteria. Three main processes will be treated :

  • Anaerobic digestion treats solid or liquid feedstocks. The course will cover that happens with organic matter during digestion, going into biological reaction. Required properties of feedstock to reach an efficient methane production will be discussed together with different existing process configurations. Each process step-up has its pros and cons, they will be discussed and connected to inhibitions processes, main limitations of the technology and the influence of these key points on the digestor stability. Several case-studies will help to explain all these crosslinked phenomena and how a digestor may be driven.
  • Methanation treats a gas to convert it into methane. This gas might be a blend of H2, CO, CO2 (syngas coming from a gasification process) or a blend of CO2 coming from a capture process and hydrogen coming from an electrolysis process (power to gas). Main reactions schemes will be cover in relation with constraints and limitations of a gas based reaction system in aqueous phase. Biological reactor architecture responding to these challenges will be presented.
  • Bio-hydrogen production by biological methods will be the opportunity to present the overall hydrogen sector. The course will then focus on the biological technology process, including reactors set-up, mechanisms, catalyst, and pros and cons of each choice. Finally, the biological production step integration in a whole chain will be covered.

Thermochemical processes

Thermochemical processes gather a large panel of high temperature processes with different atmospheres (inert, air, steam, CO2 and blends). Most of these processes are gas-solid reaction processes. The summer school will focus on the three main thermochemical processes to produce hydrogen and methane.

  • Gasification is a thermochemical process that includes several steps to crack organic matter into a blend of H2, CO, CO2, CH4, COVs, tars… called producer gas or synthesis gas (syngas). The course will follow the different steps of this conversion, basics reaction mechanisms and interactions between solid matter and gas. Different reactor set-up will be discussed, identifying advantages and main limitation of each technology.
  • Catalytic Methanation is high temperature and high pressure catalytic process allowing the recombination of H2 and CO2 or CO to build CH4. The course will be focused on catalyst, their chemical and physical form in order to improve yield and selectivity. Typical methanation catalytic processes will be also covered.
  • Hydrothermal processes are arising as a potential technology to produce CH4. They have also been studied for H2 production. They are wet methods using water at high pressure and temperature as reaction media. Basics of hydrothermal process for H2 and CH4 production will be addressed.

 Gas cleaning and separation processes

Both biological and thermochemical processes do not produce pure products. They produce a blend of molecules; few of these molecules must be removed to reach downstream operation inlet specification.

  • Gas cleaning. A general overview of the gas cleaning technologies will be done, including different separation operations, like adsorption, absorption, particle filtration… A focus will be done on particles, H2S, NH3 and tars.
  • Membrane gas separation. A specific focus will be done on gas separation using membranes. Mechanism fundamentals and membrane properties will be discussed. Its application to CH4/CO2 separation and H2 separation will be described.
  • PSA (Pressure Swing Adsorption) technology. PSA is also an important technology for hydrogen and methane purification. The course will treat on PSA semi-batch operation processes basis. The adsorption support choice depending on the objective will be also treated.

 

Hydrogenstorage

Hydrogen may be stored at rather different size (from few grams to t of H2) and phase forms (solid, liquid and gas forms). Most of the hydrogen storage technologies will be covered, and advantages and drawbacks of these solutions will be discussed. A a specific focus will be done on underground massive gas storage, including deep saline aquifers. The course will cover the development of the aquifer and the storage site design. A real case of hydrogen massive storage in deep saline aquifers will be used as example.

RenewGas Summer School 2025 - timetable

 

 

This summer school is planned to take place at IMT Mines Albi, All. des sciences, 81000 Albi

 

How to get to the IMT Mines Albi campus in Albi ? 

 

A shuttle bus from Toulouse Blagnac airport will transport participants to the campus.

 

This same shuttle will stop at the Toulouse Matabiau train station for participants arriving in Toulouse by train.

 

The return journey from Albi to Toulouse will be provided in the same way and at no extra cost.

 

Where to stay ? 

 

For those who wish, we offer rooms in a university residence on campus for 180€ before tax 10% per week.

 

Detailed information on the accommodation management will be provided on due time to registered participants.

About IMT Mines Albi

A school of the ministry in charge of industry, IMT Mines Albi is a school of the Institut Mines-Télécom, the number one group of engineering and management graduate schools in France.

At the forefront of industrial and academic stakes on the national and international scenes, it acts as a scientific and economic leader by combining its 4 missions in a virtuous circle and driving innovation:

  • a school of generalist engineers to lead and manage sustainable transitions;
  • research teams, distributed within its 3 training and research centers, which work on the emergence and improvement of industrial processes, in particular on its 4 platforms;
  • a business partner who supports new dynamics, stimulates business creations, and cultivates entrepreneurship;
  • a school that promotes the dissemination of scientific and technical culture in its territory.

 

About RAPSODEE research center

The research work of RAPSODEE (Research of Albi in Process Engineering of Divided Solids, Energy and Environment), UMR CNRS 5302, is based on a multi-scale process engineering approach oriented "products with controlled properties". Part of this work focuses on the valorization of bioresources (biomass and organic co-products) by thermochemical processes to obtain different products such as gases (syngas, methane, hydrogen), liquids (pyrolysis oils, alternative fuels) and functional solids (adsorbents, catalysts, carbon fibers, ceramics), and the valorization of molecules of biological interest (proteins, polyphenols...) from agricultural sources that do not compete with those already used for food.

The reduction of the environmental impact by the development of green processes (at laboratory and pilot scale) is one of the main issues. RAPSODEE is part of the laboratory of excellence (LabEx) SOLSTICE (SOLAR: Science, Technology and Innovation for Energy Conversion).

To federate skills and better ensure innovation and technology transfer to partner companies, RAPSODEE has two research and innovation platforms, VALTHERA located on the campus of IMT Mines Albi, and GALA® located on the ZAC Causse Espace d'Entreprises in Castres.

 

Online user: 2 Privacy | Accessibility
Loading...